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Numerical methods for light propagation in large LC cells:
a new approach
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24 Corso Duca degli Abruzzi, 10129 Torino, Italy

(Received 18 March 2002; in final form 29 November 2002; accepted 2 December 2002 )

Accurate numerical methods for the propagation of light in large 3D samples with strong
lateral variation of the director field require prohibitive amounts of time. We consider and
compare a standard spectral method and the Finite Difference in Frequency Domain method,
showing that the CPU time can be reduced by one or two orders of magnitude using a
perturbation approach or a recently developed Reduced Order Method. The equations obtained
are applied to liquid crystal cells with in-plane switching, illuminated by a large incoherent
source. The developed formalism, based on numerically exact equations, is particularly
suitable for treating magnetic or optically active media and for extending to such media the
well known approximations based on the 4×4 (Berreman) or 2×2 (Jones) matrices.

1. Introduction contribution is to show that for some standard optical
The reflection and transmission properties of large problems the CPU time and memory requirements can
samples are considered in the framework of linear optics, be greatly reduced by a perturbation expansion or by
with particular attention to liquid crystal (LC) cells a recently developed Reduced Order Method [6]. To
between parallel planes. For stratified media, i.e. for cells explain better the difficulties found with large samples
whose director field n̂(rE ) depends only on the coordinate and to describe the organization of the paper, let us con-
z orthogonal to the boundaries, the incident field can sider a LC display made of in-plane pixels having lateral
be expanded in plane waves, each one giving rise to a dimensions L=200l (#100mm), with the simplifying
transmitted and to a reflected plane wave, with two assumption n̂= n̂(x), with n̂(0)= n̂(L ) (periodic boundary
independent polarization states. The optical problem conditions). The Grating Method considers the pixel as
can therefore be exactly solved by the 4×4 matrix the unit cell of a grating periodic along x having a
method [1], known in the LC literature as the Berreman period equal to L . The number of beams generated by
method [2]. an incident plane wave is of the order of 2L /l, each one
For large cells whose director field n̂ also depends described by a 4×4 matrix. The transfer matrix U and

on the transverse vector rEt (3D cells), highly accurate the scattering matrix S are therefore defined in a vector
numerical methods require generally prohibitive CPU space whose dimension is of the order of 1600. The CPU
times and memory, hence the wide use of approximated time, with the presently existing PC, is of the order of
methods. If the dependence of n̂ on rEt is smooth on the hours. The FDFD, the Finite Different Time Domain
wavelength scale and the incidence angle is small, it is method [7] and the Beam Propagation Method (BPM),
a good approximation to divide the cell into laterally that have been recently suggested for LC cells [8],
homogeneous sub-cells, each one treated by the 4×4 usually require even longer times. For full 3D samples,
matrix method or by methods which neglect multiple the dimension of the Hilbert space becomes of the order
reflection and are based on complex 2×2 matrices of 106, and there is no hope of solving our problem
(Jones calculus [3]) or on real 4×4 matrices (Stokes– using the standard versions of such methods. The space
Mueller calculus [4]). dimension and the computer time can be either decreased
We consider here two numerically exact methods, for smooth director profiles or increased in the absence
namely a spectral method first developed for gratings, of periodic boundary conditions, but their order of
the Grating Method [5], and the Finite Difference in magnitude cannot be greatly changed. A new approach,
Frequency Domain method, FDFD. The aim of this different from the standard one, is therefore required.

For a guide to the symbols used in the following, see
the appendix.*Author for correspondence; e-mail: d.olivero@tin.it
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346 D. Olivero and C. Oldano

2. Definition of the formalism: Marcuvitz–Schwinger
J2=A 0 1

−1 0B , J4=kron (J2 , J2 )form of Maxwell equations
The material equations defining the optical properties
of the medium are written in the Tellegen form [9, 10],
and more precisely as:

=A0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0B=J−14 =JT4 . (8)
dE=eeE+xhE

bE=geE+mhE
(1)

nEr=k
E
r/k0 , k0=v/c, the superscript † indicates thewhere

hermitian conjugation, the elements c
ij
(i, j=x, y, z) of

ctt , czt , ctz are the following 2×2 matriceseE=Z−1/20 EE , e0d
E=Z−1/20 DE

hE=Z+1/20 HE , m0b
E=Z+1/20 BE .

(2)

c
ij
= A eij xijg

ij
m
ij
B (9)

e and m are the relative permittivity and permeability,
respectively; x and g are dimensionless pseudotensors and kron(A, B) is the matrix having elements a

ij
B

which take into account the possible intrinsic chirality (Kronecker or tensor product).
of the medium; and Z0= (m0/e0 )1/2. These equations Lossless and Lorentz-reciprocal media satisfy the
are particularly suitable for bianisotropic media, but Onsager–Casimir relations c

ij
=c†
ij
. This implies:

the formalism developed here is also convenient for the
L=L † (10)usual dielectric media, where x=g=0 and the relative

permeability can be assumed equal to 1.
which in turn implies the conservation of the energy

Let us consider a sample between the planes z=0
flux through the planes z=const. In fact that the

and z=d. In the frequency domain, the electromagnetic
z-component of the Poynting vector is proportional to

field is defined by the tangential components of eE and hE, y†J4y, and the z-derivative of this quantity is equalwhich are written as:
to zero, is easily shown by expressing the derivative
q
z
y† and q

z
y through equation (4) and considering

(e
x
h
x
e
y
h
y
)T=y(rEt , z)Ωexp[i(k

E
trEt−vt)] (3)

equation (10).
The simple form of equation (4) and the symmetry of

where the index t denotes the transverse component
the quantities appearing in the propagation matrix L

and the superscipt T indicates the transpose vector; y
have been of great help in approaching the problem of

is a 4-vector whose elements give the amplitudes of the
its integration, i.e. to develop the algorithm and to write

components of the field and kEt is chosen to make the codes.
the dependence of y on rEt as smooth as possible. If the
incident field is a single plane wave, it is convenient to

3. The Standard Grating Methodidentify kEt with the tangential component of the incident The field generated by a plane wave incident on thewave vector kE.
LC sample is expressed asThe time-harmonic Maxwell equations can be written

in the Marcuvitz–Schwinger form [11], as
y(rEt , z)=P yE (kEt , z) exp (ikEtrEt )dkEr. (11)

q
z
y= ik0J4L y (4)

The starting point of our numerical analysis is to sub-
where stitute the double integral over kEt with the double

summation
L=ctt− (Dt+Nt+ctz )c−1zz (D†t+N†t+czt ) (5)

y(rEt , z)=∑
q&
y
q&
(z) exp[ik0 (nEt,inc+qE )rEt] (12)

ctt= Acxx cxyc
yx
c
yy
B , ctz= Acxzc

yz
B , czt= (czx czy ) (6) where k0nEt is the transverse component of the incident

wave vector and the vector k0qE is regularly discretizedDt= (ik0 )−1 kron (J2qt , J2 ) as follows:

Nt=kron (J2nEt , J2 ) (7)

k0qEm
x
,m
y

=m
x
2p

p
x
x̂+m

y
2p

p
y
ŷ (13)

qt= (qx qy )T , nt= (nx ny )T
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347L ight propagation in large L C cells

where m
x
and m

y
are integer numbers. The discretization where

means that we multiply yE (kEt , z) by a double Dirac’s U=exp[ik0BDz] (18)
comb, and therefore convolute y(rEt , z) by the inverse

is the transfer matrix of the layer and Dz its thickness.Fourier Transform of this Dirac’s comb, which is again
The transfer matrix of the cascade grating is the producta Dirac’s comb defined on the points m

x
p
x
x̂+m

y
p
y
ŷ.

of the transfer matrices associated with its layers.This operation generates a function periodic with respect
to x and y, i.e. a 2D grating with periods p

x
and p

y
. For

4. Grating Method: perturbative approacha laterally rectangular sample with periodic boundary
The CPU time required to compute the exponentialconditions, p

x
and p

y
are identified with the lateral

functionU appearing in equation (17) becomes prohibitivedimensions of the sample, as is evident. In the absence
if the dimension 4M of the matrices is of the order of aof periodic boundary conditions the function defining the
thousand or greater. We develop here a method thatgrating becomes discontinuous, a fact that could give
can decrease the time by one order of magnitude ordifficulties for the integration of the Maxwell equations.
more, requiring the following operations:Inserting equation (12) into (4), one straightforwardly

obtains
(1) a transformation in the Hilbert space of the state
vectors y, such as to give to the system matrixq

z
y
q&
= ik0J4L q&q&∞yq&∞ (14)

the structure of a quasi-diagonal matrix;
where the summation over a repeated index is implicit,

(2) a perturbation expansion with respect to the
matrix containing the off-diagonal elements.L

q&q&∞
= g̃tt,q&−q&∞−Nq&g̃zt,q&−q&∞− g̃tz,q%−q%∞NTq&∞

For the first operation it is enough to define a new−N
q&
g̃
zz,q&−q&∞NTq&∞ (15)

state vector a whose elements are the amplitudes of the
and g̃tt,q&, g̃tz,q&, g̃zt,q& and g̃zz,q& are the matrices whose 4M plane waves with kEt=k0 (nEt,inc+qEm

x
,m
y

), propagating
elements are the Fourier transforms of the 2×2 matrices

in a suitably chosen homogeneous medium. In our analysis
c
ij
−c
iz
c−1
zz
c
zj
, c
iz
c−1
zz
, c−1
zz
c
zi
, c−1
zz
, respectively (with i

we have chosen as the homogeneous medium the one
and j running over x and y), and N

q&
is defined similarly

defined by the zero order Fourier component of the
to nt , equation (7), with nx and ny substituted by nx+qx tensor c(rE ).
and n

y
+q
y
. The equations (14), (15) are the extension

After this transformation the system matrix is written
to 2D bianisotropic gratings of the well known equations

as A+a, where A is diagonal and a contains its off-
valid for 1D dielectric gratings [5].

diagonal elements. The elements of A have the meaning of
Outside the grating each qE-value corresponds to a z-components of the normalized wave vectors associated
diffracted beam containing 4 independent plane waves,

with the plane waves propagating in the average medium.
two transmitted and two reflected. Only a limited number

For usual LC pixels, their order of magnitude is 1,
M of beams is considered in the computations. Inside

whereas the elements of the matrix a are at least one
the grating it is convenient to make use of a staircase

order of magnitude smaller.
approximation along z, i.e. to treat the sample as a

The transfer matrix
cascade grating made of z-independent layers. Within

U
a
=exp[ik0 (A+a)Dz] (19)each layer the equation system (14) will be written in

the compact form is now expanded in a power series of the elements of a,
making use of equations similar to those appearing inq

z
Y(z)= ik0BY(z) (16)

the Baker–Campbell–Hausdorff formula [12]. More
where Y(z) is the 4M-vector containing the 4-vectors precisely we make use of the following expansion:
y
q&
(z), corresponding to the diffraction orders, B=JL

q&
,

where J is the Kronecker product of theM×M identity
exp[X+x]= ∑

2

n=0
∑
2

m=n

1

m!
j
mn

(20)
matrix and J4 , L q& is a 4M×4M matrix containing the
matrices L

q&q&∞
, with L

q&q&
along the main diagonal. The

where
number M of diffraction orders must be at least equal
to the number Q of non-negligible matrices L

q&q&∞
, but it j

m0
=Xm ; j

m,m=xm (21)
could be much greater. In this last case the matrix L

q&
is

and the other elements j
m,n
are given by the recurrent

sparse. The matrices L
q&q&∞
with qE≠qE∞ play the role of

relations
coupling terms (coupled-wave approach).
Within each layer the system matrix B does not depend j

m+1,n
=xj

m,n−1+Xjm,n . (22)
on z, and equation (16) can be easily integrated, giving

The index n defines the multiplicity of the scattering
events in the considered layer. The terms with n=0 refery(z+Dz)=Uy(z), (17)
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348 D. Olivero and C. Oldano

to the average (homogeneous medium), and their sum propagating back the vector a(1)t to the input interface, and
so on. For all the samples considered here convergenceis equal to exp[X], that is quickly computed because

the matrix X is diagonal. The terms with n=1 depend is already reached at the step a(3).
linearly on the perturbative matrix x. By increasing n,
an increasing number of products of square matrices is 5. Grating Method: Reduced Order Algorithm
required. It is therefore convenient to stop the expansion For the computation of the scattering matrix most of
at the orders one or two. These approximations generally the computer time is spent in the products of square
require a further division of each layer into sub-layers. matrices. Such products can be completely avoided if
Typically, Dz is of the order of one wavelength and we only look for the output field generated by a single
about 30 terms must be retained to compute the matrix incident field, y

i
, that can be a plane wave or a super-

U by a truncated Taylor series, each one requiring a position of plane waves. In fact for each one of the
matrix product. A better accuracy can be obtained by a layers defined in § 3, the propagation equation (16) is
first order perturbative expansion if we divide the layer immediately integrated, giving
into 23=8 identical sub-layers. Their transfer matrix U1
is very quickly computed, and the computation of U y(z+Dz)=exp[ik0BDz]y(z)= ∑

2

n=0

1

n!
(ik0BDz)ny(z),requires only three matrix products.

The scattering matrix of the whole sample, between (26)
the planes z=0 and z=d, can be computed by dividing

whose computation only requires the product of matricesits transfer matrix into four 2M×2M sub-matrices as
by vectors.follows:
The continuity of the vector y through the boundary
planes allows us to find y(d+ ) if y(0− ) is known. The

Ug (d+, 0− )= AU11 U12U21 U22
B (23) difficulty arising from the fact that this last quantity is

not known, owing to the presence of the reflected field,
can be solved by the same iteration algorithm defined

where Ug is the transfer matrix obtained by choosing as at the end of the preceding section.
independent variables the amplitudes of the plane waves

For the computation of the summation appearing in
propagating in the external media (the glasses) and the

equation (26), truncated at any given order, a reduced
indices 1 and 2 refer to the progressive and regressive

order method has been recently developed [6] that will
waves, respectively. The vectors at¬a1(d+) and ar¬a2(0−) be briefly summarized here. It proceeds through the
defining the transmitted and reflected fields are given by

following two steps.
[5]:

The vectors y
n
associated with the terms of a trun-

cated series expansion (Krylov vectors) are strongly
linear dependent. This means that all these vectors areAatarB= AU11−U12U−122 U21 U12U−122−U−122 U21 U−122

B Aai0 B (24) practically contained in vector space (Krylov space)
whose dimensionality K is very small (∏10). A standard

where a
i
¬a1 (0− ) defines the incident field at z=0−. algorithm, referred to as Singular Value Decomposition

The zero at the left side of this equation corresponds to (SVD) [13], allows K to be found and to generate an
waves incident on the surface z=d, not considered here. orthonormal basis y1 , … , yK in the Krylov space. TheHowever they could be present if the cell is a part of a propagation equation can therefore be written as
more complex structure.

q
z
y(K)= ik0BKy(K) (27)The use of equation (24) requires the inversion of

the 2M×2M matrix U22 , that can be avoided by the where
following iteration procedure:

y(K)=U†
K
y, B

K
=U†
K
BU
K
. (28)

The columns of the transformation matrix U
K
, that pro-a(1)t =U11ai ; a(1)r =U9 21a(1)t ;

a(2)t =…a(1)t +U12a(1)r ; a(2)r =…U9 21a(2)t ;
(25)

ject the vectors and the matrices from the Hilbert to the
Krylov space, are the vectors y1 , … , yK . Equation (27)

where U9 ij (i, j=1, 2) are the four block elements of the is very quickly integrated, so that most of the CPU
inverse transfer matrix Ug (0−, d+ )=U−1g (d+, 0−1 ), that time is spent on the products required to generate the
can be computed by the same method used to compute Krylov vectors.
Ug (d+, 0− ); a(1)t is the forward part of field a(d+ ) com- The second step is by far the more important one,
puted by setting a(0− )=a

i
(i.e. by neglecting the reflected because it allows us to avoid the use of the big system

matrix B. This fact is related to the very structure of thefield); a(1)r is the backward part of the field obtained by
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349L ight propagation in large L C cells

matrices L
q&q&∞
. It is such that the product of the system We consider cells whose electrodes are transparent strips

matrix B¬JL by a vector y is fully equivalent to the parallel to a given direction, say y, coated on one of the
convolution of suitably defined vectors v

i
(i=1, 6) by y. boundary planes. In the distorted (ON) state the strips

To this purpose we recall that for full 3D samples the are alternatively positive and negative. If they are equi-
dimension of the Hilbert space could be of the order of spaced, the cell behaves as a 1D grating with the grating
106. In such space it becomes impossible not only to wave vector along x.
manage square matrices, but even to store their elements The cell is illuminated by a large and incoherent
in the RAM memory. However all the elements of the source. In a plane-wave expansion of the incident field,
matrix L are defined by the 4Q-dimensional vectorsN

q&
and the phases are therefore stochastic variables. We assume

c
ij,q&
, as shown in equation (15). To realize the fact that that the intensities Iinc,j of these plane waves are wellthe matrix product By is equivalent to the convolution defined functions of their direction and that the phases

of two vectors, it is enough to insert equation (15) into are randomly and uniformly distributed over the entire
(14). One obtains an expression containing summations angle 2p. With such an assumption, the average output
over qE∞ of terms of the type vq&−q&∞yq&∞ , i.e. convolution intensity �I

i
� of the i-wave is given by

products.
The definition of the vectors v

i
is given in [6]. We only �I

i
�=|S

ij
|2Iinc,j (30)

stress here the following point: the direct convolution of
two vectors requires the same number of multiplications where S is the scattering matrix of the cell. We have
as the product of a square matrix by a vector, but in computed the total output intensity Itot and its angularthe Fourier-transformed space the convolution becomes distribution I(h) for a cell between crossed polarizers,
the usual element-by-element product of two vectors, a under the simplifying assumption that all the wave vectors
fact that allows the CPU time to be greatly reduced.

are parallel to a given plane, so that a single angle h is
enough to define their directions. For comparison of the

6. Finite Difference in Frequency Domain Method
numerical methods being considered such an assumption

The direct integration of the Markuvitz–Schwinger
is not strongly restrictive. A more complete analysis of

equation in real space has been performed by writing
the performances of large LC cells is in progress and

the following set of equations for the vectors y
ij
(z) which

will be published in a future paper.
define the electromagnetic field at the points x

i
, y
j
of the

Instead of considering a particular cell, we tested the
discretized specimen:

methods with a director distribution which is charac-
q
z
y
ij
= ik0J4L ij,i∞j∞yi∞j∞ (29) terized as follows. The average director orientation is

defined by the polar coordinates H and W with respect
where the matrices L

ij,i∞j∞
with i= i∞ and j= j∞ contain

to a cartesian frame having the z-axis normal to the
the values for the material parameters in points (x

i
, y
j
)

sample and the other axes in the directions of the crossedand the others, acting as coupling matrices, are defined
polarizers. To define the Fourier composition of e(rE )by the well known finite difference matrix operators
we have assumed that n̂ is non-uniformly rotating or[14], which for periodic boundary conditions have a
oscillating around its average direction in such a wayvery simple structure.
as to generate any chosen number Q of Fourier com-The equation set (29) can be written in the compact
ponents. If the number M of incident plane waves is veryform of equation (16). The system matrix B is here very
large, the total transmitted intensity Itot is practicallysparse and therefore easily stored and treated.
independent of their phases and coincides therefore withThe same perturbation method defined in § 4 can be
its average value �Itot�. The dependence of this quantityapplied here, but it is generally less convenient. In fact
on the cell thickness d is plotted in figure 1 for Q=40,the elements of the derivative matrices are small with
H=90° and for two different values of W. The ampli-respect to 1 only if the space discretization step is very
tudes of the Fourier components have been computedlarge, of the order of one wavelength.
by assuming that n̂ depends only on x and that it isFor the Reduced Order Method the product of By
non-uniformly rotating around its average direction oncan no longer be substituted by a convolution product;
a cone with 18° of semi-aperture. The intensity Itot hasnevertheless it is quickly computed because the matrix
been normalized with respect to the total intensityB is very sparse.
incident on the cell, after the polarizer. The function
I(h) and its average value �I(h)� are shown in figure 27. Applications: in-plane switching (IPS) LC cells
(dots and solid line, respectively) for four values of theThe methods developed in the preceding sections have
normalized thickness d/l. The intensity of the incidentbeen applied to IPS cells which are of strong interest for

the realization of wide viewing angle displays [15–17]. plane waves has been assumed to be uniform in the
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350 D. Olivero and C. Oldano

on the sample thickness. However the spacing of the
grid points strongly depends on the thickness d, on
the smoothness of the director profile and on the input
field, that can be a single plane wave or a superposition
of plane waves. The distance between the grid points
can range from l/20 to l or more. The dependence of
the CPU time on this last parameter (for fixed cell
dimensions) is so strong that a plot similar to that of
figure 3 is of small interest. In general, the times required
by this method are larger than those required by the
GM. We only observe that the number of non-zero
elements of the system matrix B, that is quasi-diagonal,
increase linearly with N, which in turn increases linearly
with the lateral dimensions of the cell. On the contrary,
the number of non-zero elements of the system matrix
for the GM increases linearly with both M and Q, and

Figure 1. Transmittance vs. normalized thickness of a cell therefore quadratically with the lateral dimensions of
with refractive indices ne=1.66, no=1.54 between crossed the cell. The increase becomes linear only by using the
polarizers. Dotted line: H=0 and W=0, solid line: H=0

reduced order GM defined in 5.and W=18° where W is the azimuthal angle between the
Let us conclude with the following observations. Thepolarizer and the average director orientation.
main motivation of this research is the study of LC cells
with strong lateral variation of the director field, devices

interval−62°<h<62° and zero outside, to make more of increasing interest for the realization of wide viewing
evident the effect of the cell on the angular distribution angle displays. In the LC literature the transmittance
of the transmitted light.

of large cells is usually computed using approximate
The computations can be done by any one of the

methods which neglect diffraction, and the optimization
previously defined methods, which are numerically exact.

of the cells is generally obtained by performing experi-
The different methods are discussed in the next section.

ments. The methods defined here allow us to approach
Here we only observe that our analysis confirms that

this problem of optimization using numerical simulations,
the IPS cells can be efficient; shows that the diffraction,

assuming that we know the director field n̂(rE ) (the functionwhich has been neglected in [16, 17], could play a non
n̂(rE ) can be computed making use of commercial softwarenegligible role; and suggests that it could be possible
or the methods recently developed by Fernandez and

to obtain wide viewing angles without the use of a
co-workers [18]). The GMmethod is generally the most

compensator.
suitable. Using the perturbative method it is possible
to compute in a reasonable time the scattering matrix8. Comparison of different methods and concluding
of the 2D pixels (having dimensions of a few hundredremarks
micrometers) actually used in LC displays. Full 3D cellsWith reference to the plots of figures 1 and 2, the
require instead the use of the reduced order method,perturbative approach to the GM is the most convenient
that has been usefully applied to 80×80×5mm3 orbecause it allows us to compute the entire scattering
smaller cells for a given input. Further improvements ofmatrix. It requires four minutes to compute all the plots
the GM, which are under study, are required to treatof figure 2, where the number M of beams is equal to
larger cells. However it must be observed that the241. The CPU times for the different versions of the
problem of cell optimization could be solved usingGM are shown in figure 3, for different values of M and
smaller cells and correctly taking into account thefor Q=45, where Q is the number of Fourier components.
diffraction effects, which depend on the sample size.For Q/M%1 the perturbative approach requires times
As is evident, interest in the numerical methodsincreasing nearly linearly with M and Q. For higher

developed here goes well beyond the optics of liquidQ-values their dependence on M and Q becomes more
crystals. According to our analysis, the GM is generallycomplex and more drastic. It is worthwhile observing
preferable for samples between parallel planes and withthat it has never been necessary to consider evanescent
laterally periodic boundary conditions. For non-periodicwaves because an incidence angle of 90° in air corresponds
boundary conditions the functions defining the materialto angles smaller than 45° in the LC cell.
parameters become discontinuous. For the GM a largeThe times required by the FDFD methods depend

essentially on the number of the grid points (x
i
, y
i
) and number of Fourier components is then required, a fact
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Figure 2. Angular distribution of the transmitted intensity, for incident light with intensity uniformly distributed in the h-interval
(−62°, 62°) and random phases. Sub-plots (a), (b), (c), (d) correspond to d/l=8, 16, 24 and 32, respectively (the maxima and
minima of the solid line in figure 1). The dots refer to an incident field with random phases, and the solid line to their average
over all the possible phases.

that increases the dimension of the Hilbert space. The obtained by retaining the transverse derivatives
discontinuities could be more easily and quickly managed of c(rE ) and neglecting those of the state vector
with the FDFD method. y(rEt , z). Since only these last derivatives couple
Moreover, the formulation of the FDFD method the 4×4 matrices associated with the grid points,
given in § 6 is particularly suitable for generating several, the integration of the improved Berreman matrices,
very important approximations, of which the following which take into account the transverse variation
are recalled. of the material parameter, is as simple as for the

standard method.(i) By dropping the matrices associated with the trans-
(ii) By further dropping the coupling between pro-verse derivatives, all the coupling matrices L

ij,i∞j∞
gressive and regressive waves one obtains thewith i≠ i∞ and j≠ j∞ appearing in equation (29)
standard Jones matrix method, or its improvedgo to zero and the decoupled equations are
version that takes into account the transversethose used by the standard Berreman method.

An improved version of this last method can be derivative of c(rE ).
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Figure 3. (a) CPU time for the computation of the transfer matrix U vs. the number M of diffracted beams: the asterisks refer to
the standard GM, the dots to the GM with the perturbation algorithm. (b) CPU time for the computation of the output field
for a given input vs. M, using standard (squares), perturbative (diamonds) and reduced order (circles) methods.

The improved methods always give better results than Appendix: list of symbols
AT transpose of A.the standard methods, in particular for very thin samples

(d#l). They can be used to obtain an improved Beam A† transpose hermitian of A.
n̂(rE ) director field.Propagation Method (BPM) based on the division of

the sample into thin layers. rEt transverse part of rE, (rE=rEt+ ẑ).
J4 exchange matrix.We finally recall that all the equations given here can

be applied to magnetic, chiral and bianisotropic media, J4L , 4×4 Marcuvitz–Schwinger matrix.
J4L q&q&∞ , 4×4 system matrix in the spectral domain.thus allowing extension to more complex media of

the exact as well as the approximate methods already J4L ij,i∞j∞ , 4×4 system matrix in the FDFD formalism.
M number of diffracted beams.developed for dielectrics.
B=JL , 4M×4M system matrix.
S scattering matrix.We thank Dr D. de Boer, Dr H. Woehler and Prof.

D. Iordache for useful suggestions. Part of this work U, Ug , Ua transfer matrices.
Z0 vacuum characteristic impedance.has been supported by European Commission, project

G5RD-CT 1999-00115. c, c
ij
, … matrices defining the material parameters.
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